Galaxy Formation and Evolution

Arjun Dey

I. Where are we now?

Crude understanding of gross properties of galaxies
(i.e., crude mass estimates, size, morphology)

Limited understanding of formation and evolutionary history
(i.e., some sample averaged properties: e.g., global star formation rate, global merger rate.
some knowledge that evolution and formation history is different for different galaxy types
indications that nuclear black hole formation is integral part of galaxy formation, but the connection or relevance is not clear
knowledge that galaxy environment is important

Well-developed evolutionary history
(little predictive power at present for observations of galaxy evolution since current effort is based on simple parametrizations of complex physics)

Keen sense that problem is complex!
II. What would we like to know?

When and how do galaxies form?
When do the first objects form?
At what epoch are galaxies first ‘visible’?
At what wavelengths can the first objects be observed?
What *are* the first ‘visible’ objects?
Are these first ‘visible’ systems chemically mature?
Do galaxies form hierarchically?
 (i.e., are the first objects small ones? large ones? all sizes?)
Is galaxy formation biased?
Does BH formation always accompany galaxy formation? Is it a prerequisite?
 Is galaxy formation an ongoing process spanning many epochs?

How do galaxies evolve as a function of mass and morphology?
 (the roles of galaxy environments, merging, dark matter haloes, AGN)

The chemical processing and dispersal history of galaxies
 (i.e., enrichment and reprocessing history; how did the IGM get enriched?)
III. What do / might galaxies look like?

SEDs from Devriendt et al. (1999)

PG model from BC96 50My + VCC1003 ($\lambda>4.27\mu m$) redened by $E(B-V)=0.03$

Will GSMT/ALMA detect these at high redshift with sufficient S/N to study them in detail?
OIR Magnitudes of Luminous Protogalaxies

Magnitude of a $M_B = -21$ Protogalaxy
(No evolution)

Optical Number Counts

Differential Number Counts

- Smail et al. 1995
- Hogg et al. 1997
- Metcalfe et al. 1995 (compilation)
Flux Densities for ULIRGs and PGs

Arp 220 (L = 2.9x10^{12} L_{sun}) at different redshifts

Protogalaxy (L_{bol} = 10^{11} L_{sun}) at different redshifts

Note different scales!
IV. What Can GSMT see?

Surface brightness limits for GSMT

GSMT 2-D spectroscopy: HDF/NICMOS 1.6μm galaxies

Assumptions:
30 m GSMT primary
Solid angle element for 2D spectroscopy = 0'' .1 x 0'' .1
R = 2000
Exposure time = 6 hours
S/N per solid angle and spectral resolution element = 10
1.6μm continuum sky background = 18.5 AB mag/arcsec²
Total throughput = 50%

Only the highest surface brightness objects are available for IFU spectroscopy!
Imaging Sensitivity

- Aperture: 30m, 6m
- Wavelength: 5500Å, 12000Å, 16000Å, 22000Å, 46000Å
- R = 5
- Sky: 22.0, 24.0, 16.7, 24.0, 14.8, 22.0, 18.5, 22.0, 16.0, 24.0, 6.4, 20.9

log(S/N per Resolution Element) vs. Object AB Magnitude
Low Resolution (R=500) Spectroscopic Sensitivity

Aperture=30m, 6m
Wavelength=5500A
R=500
Sky=22.0,24.0

Aperture=30m, 6m
Wavelength=12000A
R=500
Sky=16.7,24.0

Aperture=30m, 6m
Wavelength=16000A
R=500
Sky=14.8,22.0

Aperture=30m, 6m
Wavelength=22000A
R=500
Sky=18.0,24.0

Aperture=30m, 6m
Wavelength=46000A
R=500
Sky=6.4,20.9
Moderate Resolution (R=5000) Spectroscopic Sensitivity

- Aperture=30m, 6m
- Wavelength=5500A
- R=5000
- Sky=22.0,24.0

- Aperture=30m, 6m
- Wavelength=12000A
- R=5000
- Sky=16.7,24.0

- Aperture=30m, 6m
- Wavelength=16000A
- R=5000
- Sky=14.8,22.0

- Aperture=30m, 6m
- Wavelength=22000A
- R=5000
- Sky=16.0,24.0

- Aperture=30m, 6m
- Wavelength=46000A
- R=5000
- Sky=6.4,20.9