SOLAR SYSTEM SCIENCE

June 16 2008
Science with Giant Telescopes, Chicago

David Jewitt

Institute for Astronomy, University of Hawaii
Outline of the Talk

• Quick Overview of Solar system
• Nature of the Kuiper belt
• Binary KBOs: Science Use Case
• Summary

Style: Sweeping and Accessible
The Three Domains of the Solar System

- Terrestrial planet domain (intensively studied and visited)
- Giant planet domain (exploration just beginning)
- Comet domain (only recently discovered, almost unexplored)
Background:

The Three Domains of the Solar System

- **Terrestrial planet domain** (intensively studied and visited)
- **Giant planet domain**
 (exploration just beginning)
- **Comet domain**
 (only recently discovered, almost unexplored)
Big Picture: The Three Comet Reservoirs

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Identified</th>
<th>Formation Location</th>
<th>T [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oort cloud</td>
<td>1950</td>
<td>5 - 20 AU (Jupiter - Neptune)</td>
<td>120 - 50</td>
</tr>
<tr>
<td>Kuiper belt</td>
<td>1992</td>
<td>≥ 20 AU (beyond Neptune)</td>
<td>≤ 50</td>
</tr>
<tr>
<td>Main-belt</td>
<td>2006</td>
<td>3 AU (Mars - Jupiter)</td>
<td>~150</td>
</tr>
</tbody>
</table>

Oort Cloud: 10^5 AU

Kuiper Belt: 10^2 AU
Big Picture: Primordial Ice in the Solar System

Asteroid Belt
Kuiper Belt
Centaurs
JFC
HFC
LPC
Trojans
Jupiter-Neptune Source Zone
Oort Cloud
Ejection
Defunct Comets
Disintegration
Sun/Planet Impact
MBC

David Jewitt: Chicago June 16 2008
Kuiper Belt:

- Source of Jupiter-family comets
- Sun’s Debris Disk
- Deep-freeze repository of volatile matter
- Remnant of the accretion epoch
Eccentricities are large: KB is excited
Inclinations are large: KB is a fat doughnut.
Kuiper Belt in Perspective
• Dynamically structured

• Well populated resonances:
 - planet migration

• High mean inclinations and eccentricities:
 - past excitation \((\Delta V \sim 1.7 \text{ km/s}) \)

• Mass \((\sim 0.1 \text{ M}[\text{Earth}]) \) too small for accretion:
 - current belt is a 0.1% - 1% remnant

Intense post-accretion dynamical processing has occurred
Migration and planet-planet resonance interactions together give the NICE N-Body Model
Tsiganis, Morbidelli, Levison 2005
$T = 877.8 \text{ My}$

![Graph showing semimajor axis (AU) vs. eccentricity with a label from Tsiganis, Morbidelli, Levison 2005.](image)
• Binary formation results from dynamically very cold conditions and overlapping Hill spheres.

• Binary properties tell us about this (early) state, presumably associated with accretion itself.

• Therefore, binaries provide a window onto planet accretion complementary to the one provided by the excited Kuiper belt dynamical structure.
SCIENCE USE CASE

• Optical data (GSMT) give orbit parameters semimajor axis, a, and orbital period, $T \Rightarrow$ Mass

[exploits both the sensitivity and the resolution of GSMT]

• Optical and thermal (JWST, ALMA) data give albedo, p, and radius, R

[exploits the thermal sensitivity of JWST and ALMA]

• Mass and Radius give density, ρ, the “first geophysical parameter”
Binaries are abundant [>10%?], most are close
SCIENCE USE CASE

• STEP 1: GSMT survey to identify binaries [to $\theta \sim 0.008''$ and $\Delta m \geq 5$]

• STEP 2: GSMT sampling for orbit and mass determination [periods \simweek to \simyear]

• STEP 3: JWST/ALMA measurements to determine albedo and size

[STEPS 2 and 3 would run concurrently]
Optical data (GSMT) give orbit parameters \(a \) and \(T \) => Mass

Optical and thermal (JWST) data give albedo, \(p \), and radius, \(R \)

Mass and Radius give density, the “first geophysical parameter”
SCIENCE USE CASE

Thermal Constraint

Optical Constraint

Radius [km]

Geometric Albedo

David Jewitt: Chicago June 16 2008
SCIENCE USE CASE

Kuiper Belt Objects
Planetary Satellites
Jovian Trojans
Cometary Nuclei

Density ρ [kg m$^{-3}$]

Effective Diameter D [km]

SL9
SW2
Bo
C-G
T1
Wild 2
133P
Hektor
EL61
Eris
Pluto
Charon
Phoebe
Amalthea
Enc
Patroclus
Pandora
Prometheus
QG298
TC36
Varuna
Hyperion

Jewitt 2007 Saas Fee
SUMMARY

1. Kuiper Belt is dynamically hot [$\Delta V \sim 2$ km/s], indicating past violence

2. KB wide-binaries are fragile; formation models suggest $\Delta V \sim 1 - 10$ cm/s

SCIENCE USE CASE

1. Distribution of binaries can test accretion models, frictional-damping, collisional & other capture models

2. Orbits and sizes (and Kepler’s law) will give density. Density opens up “geophysics”.

David Jewitt: Chicago June 16 2008
The End