MONSOON
TORRENT DHE PSM ⇔ LC B INTERFACE DESCRIPTION

Interface Control Document 7.4
NOAO Document TRNT-AD-01-0004
Version: 0

Authored by:
Peter Moore

Please send comments:
pmoore@noao.edu
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date Approved</th>
<th>Sections Affected</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8/10/2009</td>
<td>All</td>
<td>Initial draft release - aro</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History

2

Table of Contents

3

1.0 Introduction

5

1.1 Purpose

5

1.2 Reference documents

5

1.3 Acronyms and Glossary

5

1.3.1 Abbreviations and Acronyms

5

1.3.1 Abbreviations and Acronyms (Cont.)

6

1.3.1 Abbreviations and Acronyms (Cont.)

7

1.3.2 Glossary

7

1.3.2 Glossary (Cont.)

8

1.3.2 Glossary (Cont.)

9

1.3.2 Glossary (Cont.)

10

1.4 Standard Terminology

11

2.0 Mechanical Interface

12

2.1 Overview

12

2.2 Mechanical Specifications

13

2.2.1 Board Dimensions

13

2.2.2 PSM Board Thickness

13

2.2.3 PSM Circuit Board Face Definition

14

2.2.4 PSM Circuit Board Connector

14

2.2.5 PSM Circuit Board Connector Type

14

2.2.6 PSM Circuit Board Connector

14

2.2.7 PSM Circuit Board Connector Type

14

3.0 Electrical Interface

14

3.1 Overview

14

3.2 Power Supply Specifications

17

3.2.1 LCB Digital Power Interface (VCC)

17

3.2.2 Grounding Scheme

17

3.2.3 Maximum Current Allowed on J1 Connector Pins

17

3.3 Digital Signal Specifications

18

3.3.1 LCB Interface Logic Input Voltage Levels

18

3.3.2 LCB Interface Logic Output Voltage Levels

18

3.3.3 LCB Interface Signal Bandwidth

18

3.3.4 LCB Pulse Width Modulation Control Signal

18

3.3.4 LCB Pulse Control Signal

18

3.4 Special Signal Specifications

18

3.4.1 Reserved Connector Pin Numbers For Special Signals

18

3.4.2 PSM Board Serial Number

18

3.4.3 PSM Silicon Serial Number Identification Device

18

3.4.4 PSM Temperature Telemetry

19

3.4.5 PSM Temperature Telemetry Device

19
List of Figures

Figure 1 - Relative Position of the Power Supply Module (PSM) with Respect to the LCB ... 13
Figure 2 – Board Dimensions .. 20
Figure 3 – Special Signal Circuitry ... 21

List of Tables

Table 1 - Table 2 – J1 Current Design Power Supply Potentials and Limits 15
Table 3 - PSM Control and Status Signals on the J1 Connector 16
Table 4 - P2 Special Signal Pass Through to TSM .. 19
1.0 Introduction

1.1 Purpose
This document defines the mechanical and electrical interface for the Monsoon Torrent Detector Controller. It is to be used as the reference for the design of all Power Supply Module (PSM) circuit boards that connect to the Local Control Board (LCB) using LCB Power connector (P1).

1.2 Reference Documents
The following documents contain additional information and are referenced in the text:
Torrent LCB Schematic Drawing – NOAO Document TRNT-EL-04-2002
Torrent DHE Hardware Description – NOAO Document TRNT-AD-08-0007

1.3 Acronyms and Glossary

1.3.1 Abbreviations and Acronyms
- 12C: A high speed serial communication bus
- AC: Acquisition Camera
- ADC: Analog to Digital Converter
- AFE: Analog Front End (CCD or IR)
- BORG: Basic Observer Response GUI
- CCD: Charge Coupled Device
- CCDACQ: CCD Acquisition Board
- CDS: Correlated Double Sampler
- CLKBRD: Clock and Bias Board
- COTS: Commercial Off the Shelf
- CPCI: Compact PCI
- CPLD: Complex Programmable Logic Device
- CTC: Command To Convert
- DAC: Digital to Analog Converter
- DCS: Detector Controller System (software)
- DHE: Detector Head Electronics
- DHS: Data Handling System
- DOP: Data Output Port
- DTR: Data Transfer Request
- ECS: Enclosure Control System
- EEPROM: Electrically Erasable Programmable Read Only Memory
- EIDN: Electronic Identification Number
- EM: Electromagnetic
- EMI: Electromagnetic Interference
- ES: Embedded System
- FITS: Flexible Image Transport System
1.3.1 Abbreviations and Acronyms (Cont.)

FP Focal Plane
FPA Focal Plane Array
FPDP Front Panel Data Port -
FPGA Field Programmable Gate Array
FPM Focal Plane Module
GPX Generic Pixel Server
HV High Voltage. In this application that is +30V or -30V.
IAS Image Analysis System
IC Integrated Circuit
ICD Interface Control Document
ICS Instrument Control System
ID Identifier
IDPS Image Data Preprocessor System
IR Infrared
JTAG The usual name used for the IEEE 1149.1 standard entitled
 Standard Test Access Port and Boundary-Scan Architecture
KOSMOS Kitt Peak Ohio State Multi-Object Spectrograph
LAN Local Area Network
LCB Local Control Board
MCB Master Control Board
MEC MONSOON Engineering Console
MHz MegaHertz
MONSOON Not an acronym
MOP MONSOON Observer Platform
MSL MONSOON Supervisory Layer
N/A Not Applicable
NICD NOAO Interface Control Document
NOCS NEWFIRM Observation Control System
OCS Observatory Control System
ODI One Degree Imager
OTA Orthogonal Transfer Array
PAN Pixel Acquisition Node
PCB Printed Circuit Board
PDF Parameter Description File
PDT Parameter Description Table
PRE Pre-amp Board (resides in the transition module)
PSM Power Supply Module
PWM Pulse Width Modulated
QUOTA Quad Orthogonal Transfer Arrays
RAM Random Access Memory
ROI Region of Interest
SCA Sensor Chip Assembly
SUS Status Update System
1.3.1 Abbreviations and Acronyms (Cont.)

SYSTRAN A high speed fibre optic communications board made by Systran.
TBD To Be Decided
Torrent Not an acronym
TPA Transition Pre-amp Board
TSM Transition Module
TUB Transition Utility Board
UDP User datagram Protocol
UTIL Utility Board (Control for shutter, temperature, etc. reside in transition module)
VHDL Verilog Hardware Description Language

1.3.2 Glossary

.asm File A text file containing the assembly language program for a sequencer program to control a particular detector or focal plane segment.

cfg File A colon separated value file used by Torrent systems to describe the hardware attributes provided by the FPGA firmware. Read at run time to assist in the automatic creation of the .csv file for the detector system being run.

csv File Comma separated value file used by MONSOON and Torrent systems to describe the hardware and software attributes accessible to the GPX clients that control the pixel acquisition system through the GPX interface. Also sued by Torrent systems to describe the desired attribute layout by page, column and positions for each attribute to be displayed.

dsc File A colon separated value file used by the Torrent focal planes configuration system to describe arrays, connectors and dewars and the common connections between them.

mod File Mode file, which is a text file containing a list of attribute setting commands to be sued to put a MONSOON or Torrent system into a particular readout mode.

txt File A plain text file that contains lists of GUI categories or attributes either created at PAN process startup or read from the DHE and PAN to be stored in the attribute tables in a MONSOON formatted FITS file in the before and after housekeeping ASCII table extents.

.ucd File A microcode file. A text file containing the sequencer memory addresses and hex values to be stored in that address. The values represent the machine language output of the asm5 program used to create a detector control sequencer program for a MONSOON or Torrent system from an .asm file.
1.3.2 Glossary (Cont.)

.vhd File
A firmware source code file read by assimilate to create the .cfg files required to describe the Torrent firmware. Also used to describe the PAN level software attributes used by the PAN processes.

Byte
Eight bits

Command
An instruction requiring a system to start some action. The action may result in a voltage changing or some internal parameters being set to particular values. A command may have command parameters (arguments) that contain the details of the instruction to be obeyed.

Data Array
The data, while it is stored in data processing memory, which resulted from one or more readouts of an IR array or CCD detector.

Data Set
A self-contained collection of data generated as a result of a Pixel Server obeying a gpxStartExp command. Each gpxStartExp command results in one and only one data set.

Detector Head Electronics
The lowest level hardware system. It is normally closely connected to the photon detector and coupled to the dewar in which the detector resides.

Exposure
The name used to describe the process and the data resulting from the process of resetting/clearing a detector, exposing it to photons and then reading one or more frames to determine the photon levels. These frames are processed into a data array, called an exposure, which may be further processed. (For example, an exposure would be the data array that results when a single Reset-Readout-Integrate-Readout cycle is performed on an IR detector or a single CCD Clear-Integrate-Readout cycle.)

Exposure Sequence
The process by which valid data is produced. Various levels of exposure sequencing occur during an observing run. At the lowest level there are the Reset-Readout-Integrate-Readout or Clear-Integrate-Readout cycles that result in a single IR or OUV exposure. At the highest level are the observing sequences that move the telescope, configure the instrument and take a series of exposures that create an observation.

Focal Plane
The geometrical plane where the image from an optical instrument is formed. This is the physical location of the detector device.

Focal Plane Segment
A collection of one or more detectors arranged to collect photons from an instrument. A Focal Plane Segment is controlled by a single Pixel Acquisition Node (PAN).
1.3.2 Glossary (Cont.)

Frame

The result of one or more readouts of an array averaged pixel by pixel. Each frame represents the signal values obtained from reading the entire ROI being read out of the detector. Multiple frames may be processed into a single exposure.

Generic Pixel Server

A pixel server that conforms to the GPX Interface description.

Guide Core

The software routines that calculate the centroids and image shifts required for controlling an Orthogonal Transfer Array (OTA).

Guide Map

An array of eight bytes that have a 1 in each position corresponding to an orthogonal transfer array (OTA) cell that will be used in the guide calculation.

Guide Region

A portion of an OTA guide cell as defined by the Guide Map that contains a guide star.

Image

The array of detector pixel and description data representing a science or diagnostic image or spectrum. An image is capable of being displayed or processed as a discrete entity. The values in the array may be stored in memory or on disk and are related to the data taken by the detector by some processing algorithm, (for example an image may consist of all the coadded and averaged exposures in one beam of a chop mode gpXStartExp command).

Image Acquisition System

A system of software and hardware capable of producing images from a focal plane on command.

Image Server

See Image Acquisition System.

MONSOON Image Acquisition System

A Generic Pixel Server. An extensible, modular Image Acquisition System. The system design is, to the extent possible, independent of the hardware being used in a particular implementation. Each component of the system should be capable of replacement by a similar component without having to redesign the rest of the system. Each component of the software is, as far as possible, independent of the underlying hardware and as modular as possible.

MONSOON Star Date

A date/time value that gives a unique ID to exposures in MONSOON systems. The MSD is formed using the JulianDay + TimeOfDay (to the nearest 86.4 ms .000001 of a day). The exposure ID is calculated to the nearest ms but on display is truncated to six decimal places.

Observation

The process of exposing the focal plane to photons in one or more exposures. The result of an observation is an image.
1.3.2 Glossary (Cont.)

Pixel Acquisition Node
The computer that handles the interface to the detector head electronics and the image pre-processing of the data stream from the *Detector Head Electronics*.

Pixel Server
A system which produces pixel values when requested to do so by some client system.

Pixel Server System
The combination of the *Detector Head Electronics* and a *Pixel Acquisition Node* which are coordinating the task of taking exposures and archive the resulting data set.

Read
When used as a noun to describe instrument data, this refers to a single read of a pixel on the detector. A read may consist of several A/D conversions of the pixel data that are averaged or processed in some other way to produce a single integer output value for the pixel. A Readout is made up of one read of each pixel in the detector ROI being read.

Readout
When used as a noun to describe instrument data, this refers to a single read of every pixel in the detector. One or more readouts can be averaged pixel by pixel to create a frame.

Region of Interest
A sub-array of the available detector area. There are two types of sub-arrays that can be defined. The Sequence ROI is on the active surface of the array used to increase the frequency of the Array readout. The Data Reduction ROI is an arbitrary rectangle of any size that fits on the Array. Data Reduction ROIs are defined to reduce the volume of data sent to the disk or DHS even when the entire array is being read out.

Supervisory Node
A computer capable of controlling multiple Image Acquisition systems. The computer that runs the software that conforms to the GPS interface.

Value
The value associated with an “attribute”.

Word
Four bytes or 32 bits.
1.4 Standard Terminology

To avoid confusion and to make very clear what the requirements for compliance are, many of the paragraphs in this standard are labeled with keywords that indicate the type of information they contain. The keywords are listed below:

RULE

RECOMMENDATION

SUGGESTION

PERMISSION

OBSERVATION

These keywords are used as follows:

RULE

<Paragraph Number> Subject Describing Text

Rules form the basic framework of this draft standard. They are sometimes expressed in text form and sometimes in the form of figures, tables or drawings. All rules shall be followed to ensure compatibility between components. All rules use the “SHALL” or “SHALL NOT” words to emphasize the importance of the rule. The upper case “SHALL” or “SHALL NOT” words are reserved exclusively for stating rules in this standard and are not used for any other purpose.

RECOMMENDATION

<Paragraph Number> Subject Describing Text

Recommendations found in this standard are based on this kind of experience and are provided to designers to speed their traversal of the learning curve. All recommendations use the “SHOULD” or “SHOULD NOT” words to emphasize the importance of the recommendation. The upper case “SHOULD” or “SHOULD NOT” words are reserved exclusively for stating recommendations in this draft standard and are not used for any other purpose.

SUGGESTION

<Paragraph Number> Subject Describing Text

Suggestions are included to help a designer who has not yet gained this experience.
PERMISSION

In some cases a rule does not specifically prohibit a certain design approach, but the reader might be left wondering whether that approach might violate the spirit of the rule or whether it might lead to some subtle problem. Permissions reassure the reader that a certain approach is acceptable and will cause no problems. All permissions use the “MAY” word to emphasize the importance of the permission. The upper case word ”MAY” is reserved exclusively for stating permissions in this draft standard and is not used for any other purpose.

OBSERVATION

Observations do not offer any specific advice. They usually follow naturally from what has just been discussed. They spell out the implications of certain rules and bring attention to things that might otherwise be overlooked. They also give the rationale behind certain rules so that the reader understands why the rules shall be followed.

2.0 Mechanical Interface

2.1 Overview

The Torrent Detector Head Electronics (DHE) requires power sources of appropriate voltage and capacity to function within the requirements of its application. The mechanical structure of the DHE provides a physical space to supply these requirements. The space provided for the Power Supply Module (PSM) is shown in Figure 1. The power supply module that fits into this space has provision to connect to the Local Control Board (LCB) using LCB connector P1 and to the Transition Module (TSM) via TSM connector P2. Provision is usually made on the rear bulkhead of the power supply chassis to support additional connectors for the supply of raw power and auxiliary signals required by the application of a Torrent controller.
2.1 Mechanical Specifications

2.2.1 Board Dimensions

The PSM circuit board SHALL comply with the dimensions given in Appendix I. This coincides with Torrent drawing TRNT-AD-01-xxxx.

2.2.2 PSM Board Thickness

The AFE circuit board SHOULD be nominally 0.090 inches (2.286mm) thick.
2.2.3 PSM Circuit Board Face Definition

The ‘TOP’ side (layer one) of the circuit board SHALL be the side that is closest to the LCB board.

2.2.4 PSM ⇔ LCB Circuit Board Connector

The PSM circuit board SHALL provide a connector position to interface to the LCB. The naming of this connector SHALL be J1 (mates to the LCB connector P1). The position of this connector SHALL be in accordance with the drawing shown in Appendix I.

2.2.5 PSM ⇔ LCB Circuit Board Connector Type

The PSM circuit board connector J1 SHALL be of type SAMTEC LS2-130-01-L-D (60 position straight surface mount, 2.00mm pitch).

2.2.6 PSM ⇔ TSM Circuit Board Connector

The PSM circuit board MAY provide a connector position to interface to the TSM bulkhead connector if the DHE application requires it. The naming of the PSM mounted connector should be J2 (mates to bulkhead connector P2 and then to the TSM mounted connector J2). The position of this connector should facilitate connection to the floating bulkhead connector P2.

2.2.7 PSM ⇔ TSM Circuit Board Connector Type

If the PSM circuit board utilizes connector J2 it MAY be of any suitable type to connect to the DB25 type connector P2 on the bulkhead.

3.0 Electrical Interface

3.1 Overview

The electrical interface between the LCB and the PSM board has four groups of signals;

- Power supplies
- Control and status signals to / from the power supplies
- Control and status signals to / from the transition module
- Special purpose signals used to identify the PSM board characteristics.
The PSM ↔ LCB interface connector provides the primary power supply required by the logic of the LCB. This one supply must be provided in any PSM configuration. In the standard design there is provision for another seven power supply paths on the LCB P1 connector, none of which are directly used by the LCB. One of these supply paths is designed for use by a cooling fan that regulates the operating temperature in the DHE enclosure. The six remaining supplies are, by current design, routed directly to the LCB Mezzanine board for power control and telemetry, and from there directly to the Analog Front End boards. The current design specifies these supplies and current limits as shown in Table 1.

Table 5 – J1 Current Design Power Supply Potentials and Limits

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>DESCRIPTION</th>
<th>MIN V</th>
<th>MAX V</th>
<th>MIN I</th>
<th>AVG I</th>
<th>MAX I</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>PRIMARY LOGIC POWER SUPPLY</td>
<td>3.00V</td>
<td>3.60V</td>
<td>0.2</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>VFAN</td>
<td>DHE TEMPERATURE STABILIZATION</td>
<td>6V</td>
<td>14V</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>VCB+</td>
<td>POSITIVE CLOCK GENERATOR SUPPLY</td>
<td>+9V</td>
<td>+18V</td>
<td>0.006</td>
<td>0.35</td>
<td>0.65</td>
</tr>
<tr>
<td>VCB-</td>
<td>NEGATIVE CLOCK GENERATOR SUPPLY</td>
<td>-18V</td>
<td>-9V</td>
<td>0.006</td>
<td>0.35</td>
<td>0.65</td>
</tr>
<tr>
<td>VANA+</td>
<td>POSITIVE VIDEO CHAIN SUPPLY</td>
<td>+5V</td>
<td>+10V</td>
<td>0.006</td>
<td>0.4</td>
<td>0.72</td>
</tr>
<tr>
<td>VANA-</td>
<td>NEGATIVE VIDEO CHAIN SUPPLY</td>
<td>-10V</td>
<td>-5V</td>
<td>0.006</td>
<td>0.25</td>
<td>0.72</td>
</tr>
<tr>
<td>VHV+</td>
<td>POSITIVE HIGH VOLTAGE BIAS SUPPLY</td>
<td>+5V</td>
<td>+30V</td>
<td>0.006</td>
<td>0.12</td>
<td>0.2</td>
</tr>
<tr>
<td>VHV-</td>
<td>NEGATIVE HIGH VOLTAGE BIAS SUPPLY</td>
<td>-30V</td>
<td>-5V</td>
<td>0.006</td>
<td>0.12</td>
<td>0.2</td>
</tr>
</tbody>
</table>

All control signals going to the PSM and TSM are buffered by 3.3v LVTTL buffers of type 74ALVC244. All status signals coming the PSM and TSM are likewise buffered by the same LVTTL buffer type to provide isolation, increase drive capability and provide some first line protection to the LCB Virtex FPGA from possible faults and unexpected conditions on these signals.

The function of the LVTTL level control and status signals are determined entirely by firmware in the LCB Virtex FPGA, that is, these signals go directly to the I/O of the FPGA without any intervening logic. However, since buffers are employed on the control and status signals, the direction of the signals must be observed as shown in Table 2.

All signals in the special purpose group are also buffered by level translators for the same reasons. These signals use a NLSV2T244 driver type and NLSX3014 receiver type on the LCB. Signals in the special purpose group are used to provide board identification. The PSM board is expected to have this facility and employs a minimal standard circuit that provides PSM board identification, AFE board temperature monitoring and a modest amount of local EEPROM storage space for constants and calibration value saving. These functions are carried out by a dedicated I2C two-wire interface controlled by the LCB. See Appendix III.

Table 2 shows the PSM and TSM power, control and status signal assignments for J1 in the current design.
<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Num J1</th>
<th>Sig Type</th>
<th>Direction (relative to LCB)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>1,3</td>
<td>PWR</td>
<td>IN</td>
<td>LOGIC POWER SUPPLY</td>
</tr>
<tr>
<td>GND</td>
<td>2,4,11,12,</td>
<td>PWR</td>
<td>OUT</td>
<td>COMMON GROUND POINT OF DHE</td>
</tr>
<tr>
<td></td>
<td>34,38,40,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42,44,48,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50,52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCC_SYNC</td>
<td>5</td>
<td>PULSE</td>
<td>OUT</td>
<td>SYNCHRONIZE THE SWITCHING FREQUENCY</td>
</tr>
<tr>
<td>SHUTTER</td>
<td>6</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO TSM</td>
</tr>
<tr>
<td>/SHUTTER_CLOSE</td>
<td>7</td>
<td>LEVEL</td>
<td>IN</td>
<td>STATUS FROM TSM</td>
</tr>
<tr>
<td>/SHUTTER_OPEN</td>
<td>8</td>
<td>LEVEL</td>
<td>IN</td>
<td>STATUS FROM TSM</td>
</tr>
<tr>
<td>TEMP_1</td>
<td>9</td>
<td>FREQ</td>
<td>IN</td>
<td>DETECTOR TEMPERATURE SIGNAL</td>
</tr>
<tr>
<td>TEMP_2</td>
<td>10</td>
<td>FREQ</td>
<td>IN</td>
<td>DETECTOR TEMPERATURE SIGNAL</td>
</tr>
<tr>
<td>PREFLASH</td>
<td>13</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO TSM</td>
</tr>
<tr>
<td>/PWR_KILL</td>
<td>14</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – POWER SHUTDOWN</td>
</tr>
<tr>
<td>/PWR_INT</td>
<td>15</td>
<td>LEVEL</td>
<td>IN</td>
<td>STATUS FROM PSM – USER SHUTDOWN REQ</td>
</tr>
<tr>
<td>HTR_CURRENT</td>
<td>16</td>
<td>FREQ</td>
<td>IN</td>
<td>TELEMETRY FROM PSM – HEATER CURRENT</td>
</tr>
<tr>
<td>HTR_VOLTAGE</td>
<td>17</td>
<td>FREQ</td>
<td>IN</td>
<td>TELEMETRY FROM PSM – HEATER VOLTAGE</td>
</tr>
<tr>
<td>PSM_SDA_SRC</td>
<td>18</td>
<td>I2C</td>
<td>OUT</td>
<td>INTERFACE TO PCM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>TSM_SDA_SRC</td>
<td>19</td>
<td>I2C</td>
<td>OUT</td>
<td>INTERFACE TO TSM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>VANA_SYNC</td>
<td>20</td>
<td>PULSE</td>
<td>OUT</td>
<td>COMMAND TO PSM – VIDEO PS SYNC</td>
</tr>
<tr>
<td>VANA_ENBL</td>
<td>21</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – VIDEO PS ENABLE</td>
</tr>
<tr>
<td>VCB_ENBL</td>
<td>22</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – CLK & BIA PS ENABLE</td>
</tr>
<tr>
<td>VCB_SYNC</td>
<td>23</td>
<td>PULSE</td>
<td>OUT</td>
<td>COMMAND TO PSM – CLK & BIAS PS ENABLE</td>
</tr>
<tr>
<td>/VHTR_SUSPEND</td>
<td>24</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – DET HTR SUSPEND</td>
</tr>
<tr>
<td>VCBR ENBL</td>
<td>25</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – DET HTR ENABLE</td>
</tr>
<tr>
<td>PSM_SCL_SRC</td>
<td>26</td>
<td>I2C</td>
<td>OUT</td>
<td>INTERFACE TO PCM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>TSM_SCL_SRC</td>
<td>27</td>
<td>I2C</td>
<td>OUT</td>
<td>INTERFACE TO TSM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>VHTR_ADJ</td>
<td>28</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – DET HTR ADJUST</td>
</tr>
<tr>
<td>PSM SDA_SNS</td>
<td>29</td>
<td>I2C</td>
<td>IN</td>
<td>INTERFACE FROM PCM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>TSM SDA_SNS</td>
<td>30</td>
<td>I2C</td>
<td>IN</td>
<td>INTERFACE FROM TSM SPECIAL CIRCUITS</td>
</tr>
<tr>
<td>VANA+ ADJ</td>
<td>31</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – VIDEO PS ADJUST</td>
</tr>
<tr>
<td>VCB+ ADJ</td>
<td>32</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – CLK & BIAS PS ADJUST</td>
</tr>
<tr>
<td>VCB- ADJ</td>
<td>33</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – CLK & BIAS PS ADJUST</td>
</tr>
<tr>
<td>VANA-</td>
<td>35,37</td>
<td>PWR</td>
<td>IN</td>
<td>NEGATIVE VIDEO POWER SUPPLY</td>
</tr>
<tr>
<td>VANA- ADJ</td>
<td>36</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – VIDEO PS ADJUST</td>
</tr>
<tr>
<td>VCB-</td>
<td>39,41</td>
<td>PWR</td>
<td>IN</td>
<td>NEGATIVE CLOCK & BIAS SUPPLY</td>
</tr>
<tr>
<td>VH-</td>
<td>43</td>
<td>PWR</td>
<td>IN</td>
<td>NEGATIVE HIGH VOLTAGE SUPPLY</td>
</tr>
<tr>
<td>VHVP POLS/LCT</td>
<td>45</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – HV PS POLARITY</td>
</tr>
<tr>
<td>VHVP SYNC</td>
<td>46</td>
<td>PULSE</td>
<td>OUT</td>
<td>COMMAND TO PSM – HV PS SYNC</td>
</tr>
<tr>
<td>VHVP</td>
<td>47</td>
<td>PWR</td>
<td>IN</td>
<td>POSITIVE HIGH VOLTAGE BIAS SUPPLY</td>
</tr>
</tbody>
</table>
Table 7 – PSM Control and Status Signals on the J1 Connector (cont.)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Pin Num J1</th>
<th>Sig Type</th>
<th>Direction (relative to LCB)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCB+</td>
<td>49,51</td>
<td>PWR</td>
<td>IN</td>
<td>POSITIVE CLOCK & BIAS SUPPLY</td>
</tr>
<tr>
<td>VANA+</td>
<td>53,55</td>
<td>PWR</td>
<td>IN</td>
<td>POSITIVE VIDEO POWER SUPPLY</td>
</tr>
<tr>
<td>INPWR_SHLD</td>
<td>54,56</td>
<td>PWR</td>
<td>OUT</td>
<td>UNCOMMITTED SHIELD GROUND</td>
</tr>
<tr>
<td>VFAN_ADJ</td>
<td>57</td>
<td>PWM</td>
<td>OUT</td>
<td>COMMAND TO PSM – FAN ADJUST</td>
</tr>
<tr>
<td>VFAN_ENBL</td>
<td>58</td>
<td>LEVEL</td>
<td>OUT</td>
<td>COMMAND TO PSM – FAN ENABLE</td>
</tr>
<tr>
<td>VFAN</td>
<td>59</td>
<td>PWR</td>
<td>IN</td>
<td>FAN POWER SUPPLY POSITIVE</td>
</tr>
<tr>
<td>VFAN_RTN</td>
<td>60</td>
<td>PWR</td>
<td>OUT</td>
<td>FAN POWER SUPPLY NEGATIVE</td>
</tr>
</tbody>
</table>

3.2 Power Supply Specifications

3.2.1 LCB Digital Power Interface (VCC)
RULE

The PSM board SHALL incorporate circuitry to supply to a voltage potential of 3.3v +/- 10% to the LCB. This potential SHALL be capable of supporting a maximum continuous current of 2.5 Amps.

3.2.2 Grounding Scheme
RULE

The PSM circuit board SHALL provide a sufficiently low impedance path to the primary power source to limit the fluctuations of the PSM ⇔ LCB ground connector pins to within a 2mv pk-pk envelope based on a 2.5Amp current delta in the LCB.

3.2.3 Maximum Current Allowed on J1 Connector Pins
RULE

The maximum current allowed on each connected pin of the J1 connector SHALL be in accordance to the maximum specifications of the connector pair used for the interface. For the SAMTEC part connector (LS2-130-01-l-D) this limits the maximum current to be 5 Amps per contact at 20 Deg. C. ambient.

3.3 Digital Signal Specifications

3.3.1 LCB Interface Logic Input Voltage Levels
RULE

All digital interface signals that are directly connected to the J1 connector pins SHALL be defined as LVTTL compatible. The minimum high level SHALL be 2.0volts into a 6ma load. The maximum low level input SHALL be 0.8 volts into a 6ma load.
3.3.2 LCB Interface Logic Output Voltage Levels

All digital interface signals that are directly connected to the J1 connector pins SHALL be defined as LVTTL compatible. The minimum high level for signals coming from the LCB SHALL be defined as 2.4 volts into a 6ma load. The maximum low level for signals coming from the LCB SHALL be 0.4 volts into a 6ma load.

3.3.3 LCB Interface Signal Bandwidth

The maximum switching rate for digital signals supported by the LCB ↔ PSM interface SHALL be 120 MHz.

3.3.4 LCB Pulse Width Modulation Control Signal

Circuits that use a pulse width modulation scheme (PWM) generated by the LCB for control SHALL be capable of interpreting a control range between 0% and 100% of the PWM signal. The PWM signal generated by the LCB SHALL have a minimum pulse repetition frequency of 300KHz and a maximum frequency of 500 KHz. The modulation depth of the PWM signal SHALL be 128:1.

3.3.4 LCB Pulse Control Signal

Circuits that are required to use a pulse control (PULSE) signal generated by the LCB SHOULD use the negative edge of the pulse signal for synchronization. The pulse signal generated by the LCB will have a minimum negative pulse width of 500ns and a maximum pulse width 50000ns. The minimum pulse repetition frequency will be 0 Hz and the maximum pulse frequency will be 1MHz.

3.4 Special Signal Specifications

3.4.1 Reserved Connector Pin Numbers For Special Signals

Connector J1 pin numbers 18, 19, 26, 27, 29, and 30 SHALL NOT be used for other purposes than those specified in this section.

3.4.2 PSM Board Serial Number

The PSM circuit board SHALL include a circuit to provide unique identification to the LCB (silicon serial number). The interface to this circuit SHALL be via the I2C protocol using three wired connections. See Appendix III for the circuit.

3.4.3 PSM Silicon Serial Number Identification Device

The silicon serial number device type SHALL be electrically and functionally equivalent to the DS28CM00 device from Maxim / Dallas Semiconductor. This device has a fixed address code of 0x50.
3.4.4 PSM Temperature Telemetry

RECOMMENDATION

The PSM circuit board SHOULD include a circuit to provide temperature measurement of the circuit board surface temperatures to the LCB (silicon temperature sensors). There SHOULD be two sensors; ideally mounted to provide a representative indication of the heat generated by the PSM. The interface to this circuit SHOULD be via the I2C protocol using three wired connections. See Appendix III for the circuit.

3.4.5 PSM Temperature Telemetry Device

RULE

If the temperature telemetry facility is implemented (3.4.4) then the device used to implement this SHALL be electrically and functionally equivalent to the MCP9803 device from Microchip and the addresses SHALL be programmed as 0x48 and 0x49 respectively.

3.4.6 PSM Configuration Parameter EEPROM

RECOMMENDATION

The PSM circuit board SHOULD include a circuit to provide access to a non-volatile memory device that can be used to store calibration constants and parameters that are unique to the PSM Board. The interface to this circuit SHOULD be via the I2C protocol using three wired connections. See Appendix III for the circuit.

3.4.7 PSM EEPROM Address

RULE

If the Non-Volatile Parameter EEPROM facility is implemented (3.4.6), then the EEPROM type SHALL be electrically and functionally equivalent to the 24AA128 device from Microchip and the address SHALL be programmed as 0x54 by tying pins A0 and A1 low with pin A2 high.

3.4.8 Special Signal Power Supply

RULE

The semiconductor devices SHALL be powered by the principal 3.3v VCC power supply provided by the PSM. Ground pins of these devices SHALL be connected to the 3.3v VCC power supply return point.

3.4.9 TSM Special Circuit Signal Pass-through

RULE

If the optional TSM connector is supplied then the PSM SHALL provide a feedthrough for the special circuit signals required by the TSM between PSM connectors J1 and P2. These feed-through connections SHALL be in accordance with Table 3.

Table 8 - Special Signal Pass Through to TSM

<table>
<thead>
<tr>
<th>PSM J1 Pin</th>
<th>Signal</th>
<th>PSM P2 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>TSM_SDA_SRC</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>TSM_SDA_SNS</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>TSM_SCL_SRC</td>
<td>14</td>
</tr>
</tbody>
</table>
4.0 Appendix I – Board Dimensions

Board Dimensions
Figure 2
5.0 Appendix II – Special Signal Circuitry

Special Signal Circuitry
Figure 3