The Indexing of the SDSS Science Archive

P. Z. Kunszt, A. S. Szalay, I. Csabai1, A. R. Thakar

Dept. of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

Abstract.

The Spatial Indexing used in the Sloan Digital Sky Survey (SDSS) Science Archive2 divides the spherical surface into triangles in a hierarchical scheme resulting in roughly equal surface areas at each level, which is a big advantage over other schemes. The location of a point on the sky may be given by the unique index id to any level, refining it with each step. This naming scheme is being used successfully in other catalogs, too, like GSC-II and GAIA. The use of the Spatial Index in the SDSS is two-fold, a level-5 index is used to partition the bulk data, and a high-resolution level-14 index id is assigned to each data point to enable quick lookup and proximity searches.

Use of this indexing scheme in more catalogs will enormously simplify cross-matching of objects. Using a new computing paradigm, we recently realized a quantum leap in performance that makes this scheme competitive with bit-interleaving and requires very little memory.

The Flux-space Indexing used is a traditional $k - d$ tree. The space is 5 dimensional, 5 being the number of SDSS-filters. The specialization to astronomical data has been achieved by modeling the location of the main branch in this space and applying the $k - d$ tree subdivisions only to its confined area. The outliers are indexed separately. Most of the interesting data points come directly from the outlier part of the index, with no additional analytical effort.

Additionally, the key-look up index feature of object-oriented databases is exploited for much-used parameters like flags.

1. Introduction

Indexing is one of the major issues which has to be addressed by modern astronomical database systems that deal with multiple terabytes of data. Most scientific queries are concerned only with a fraction of the whole data volume, the query being confined to a finite volume in 3D space and in color space. Good indexing techniques reduce the data volume that is effectively scanned

1Department of Physics, E\'otv\'os L\'or\'ant University Budapest, Hungary

2http://www.sdss.jhu.edu/
Figure 1. Subdividing a triangle recursively into 4 new ones. Here we show planar triangles for simplicity. The vertex order is changed on the new triangles, 0 labeling the old triangle’s corners. The naming scheme is to append the parent vertex’s index to the parent’s name.

on by several orders of magnitudes for such confined queries (ideally, only the queried data is physically read from disk).

The SDSS Science Archive (SX) makes use of two indexing techniques for user queries. (The SDSS project and Science Archive is described in further detail in articles by A. S. Szalay and by A. R. Thakar in this volume.) The first index is called the Hierarchical Triangular Mesh (HTM), which is used to subdivide the surface of the unit sphere into roughly equal-sized spherical triangles. (This method was advocated by P. Barrett, ADASS 94; proposed in detail by A. Szalay, R. Brunner et al., 1996. See also H. Samet, 1990a/b) The HTM, a quad-tree, is used as the spatial index of the SX.

The second major index is an enhanced k-d tree that is used on the 5-dimensional color space of the SDSS data (the dedicated SDSS camera has 5 passband filters). Both indices are used to reduce the total data volume that needs to be scanned for the user query to complete.

2. The Hierarchical Triangular Mesh

Object coordinates are located on the surface of the celestial (unit) sphere, usually given by ra, dec. For the HTM, we will convert to cartesian coordinates to simplify our notation. The HTM is a quad-tree, its top nodes are the 8 segments that define the octahedron on the sphere (its sides are given by the intersection of the sphere with the x, y, z planes). The 6 corners of the octahedron are, enumerated from 0 to 5 as follows: 0: $(0, 0, 1); 1: (1, 0, 0); 2: (0, 1, 0); 3: (-1, 0, 0); 4: (0, -1, 0); 5: (0, 0, -1).

The nodes of the HTM quad-tree are always spherical triangles with great circle segments connecting the corners. The triangles are specified by their vertices, the vertices always given in counterclockwise order. The 8 root nodes are, using the enumeration of the 6 octahedron corners from above: $S0: \{1, 5, 2\}; S1: \{2, 5, 3\}; S2: \{3, 5, 4\}; S3: \{4, 5, 1\}; N0: \{1, 0, 4\}; N1: \{4, 0, 3\}; N2: \{3, 0, 2\}; N3: \{2, 0, 1\}$.
The quad-tree is obtained by subdividing the triangles into 4 new triangles, using the current corners and the side-midpoints as the corners for the new triangles (as illustrated by figure 1). The new nodes obtained in this fashion are named by appending the index 0, 1, 2, 3 to the parent’s name, depending which vertex the new triangle shares with its parent (3 for the middle triangle).

At each level n of the HTM, the average triangle area is $1/4$ of their parent triangle’s average area, i.e. exactly $2\pi/4^{n+1}$. There will be no triangle, however, with exactly this area at any but the root level. Already at the first subdivision, the middle triangles have different areas and side-lengths (the angle at each corner of the root triangles is exactly $\pi/2$, which is not true anymore for the next level). The scatter of the different triangle areas remains within $\pm 70\%$ of the mean area at any level. It can be shown that the ratio of the minimal and maximal triangle areas quickly converges to a constant value (roughly 2).

The length of each triangle side is thus also distributed between a minimal and maximal length for each level. It is easy to see that the minimal side length is given by the subdivisions of the 3 major big circles that define the 8 root nodes, giving minimal side lengths of $\pi/2^{n+1}$ at level n. It can be shown that the maximal side-length converges to $\pi/2$ times the minimal length. So for example at level 14, the side-lengths are between 20 and 30 arcseconds.

3. Cross-Matching using HTM

The HTM name can be bit-encoded into a single integer (2 bits per level), giving an HTM ID for each object. The ID up to level 14 can be stored in a 32-bit integer, and up to level 30 in a 64-bit integer. We suggest that each database stores the HTM ID for each object to a level depth where the triangle side-length reaches the object’s size. For a catalog with angular resolution of 20 arcseconds it does not make sense to go beyond level 14.

To cross-match two catalogs, we retrieve each object’s location (x, y, z) from the catalog with the better resolution (i.e. where the ID is stored to a higher level n_1) and determine the triangles that are in its vicinity at the HTM level of the second catalog (n_2). This is done by finding all the triangles in level n_2 that are touched by a sphere segment with origin at (x, y, z) and diameter of the minimal side-length of level n_2; at most 6 triangles. Now we just look up these 6 IDs in the second catalog whether they match any of the objects within.

This procedure is basically an ID lookup in both catalogs. If the ID is key indexed in both catalogs, the cross-matching should be working with the same speed as the lookup of the catalog objects one by one, i.e. we have an order(N) algorithm.

4. The Enhanced $k – d$ Tree

The $k – d$ tree used in the SX differs from standard $k – d$ trees in two respects. The first is that we don’t use the standard method to cut the data volume in alternating dimensions but we calculate the bounding box of each cell at each level and cut in the direction with the largest box side. Thus we get a minimal aspect ratio $k – d$ tree. It has been shown recently (C. Duncan, thesis) that
$k - d$ trees constructed in this way perform very well as generic indexing trees for various aspects of indexed lookup.

The second enhancement is to model the object’s predicted location in color-space (the stellar locus for example) and construct a convex hull of that area. The first ‘cut’ of our $k - d$-tree is deciding whether an object lies inside or outside the predicted area. If it is an outlier, it is stored in one branch, and the rest is indexed using the $k - d$-tree described above. In such a way, many of the most interesting objects are found using a simple index query.

5. Index Usage in the SDSS Science Archive

The physical data layout of the SX makes use of both the HTM and the $k - d$-tree. The underlying commercial database of SX is Objectivity, which is an object-oriented DBMS. In an Objectivity federation, ‘databases’ are single files that contain the objects, grouped into ‘containers’.

In the SX, we define the databases to be the level-5 leaf nodes of the HTM, (defining the database file name) and we order the objects inside the database according to their $k - d$-tree leaf node number. This way, if we query for objects confined to a limited area on the 3D sphere, we only need to open the level-5 HTM databases that contain the corresponding area. If a query involves a domain of color space (5-dimensional for SDSS), we do need to open all databases, but the data will be localized close to each other in each of them. This makes very effective use of the hardware and software caching mechanisms.

6. Implementation

The current implementation of the HTM is available on the SDSS Science Archive Website in C, C++ and JAVA. The code has been tested on various Unix platforms (Solaris, OSF/1, IRIX, Linux) and on Windows NT/98/95. It should run on other platforms as well. We do want to encourage everyone building catalogs to include the HTM ID with their catalog objects so that cross-matching between catalogs is simplified. The software also comes with a variety of query capabilities; basically any shape on the spherical surface can be submitted to it to get the triangles that are fully contained or partially contained within that surface. The code is freely available.

References

A. S. Szalay, this volume, [O1-02] and A. Thakar, this volume, [P1-05]
Samet, H. 1990a/b. Applications of Spatial Data Structures and The Design and Analysis of Spatial Data Structures; Addison-Wesley.
A. S. Szalay, R. Brunner et. al. proposal, 1996
C. Duncan, Thesis, Johns Hopkins Univ., Dept. of Computer Science, 1999