Hobby-Eberly Telescope Dark Energy Experiment (HETDEX)

Gary J. Hill, Karl Gebhardt, Phillip J. MacQueen, & Eiichiro Komatsu

McDonald Observatory & Department of Astronomy
University of Texas at Austin

Introduction

• Case for observing baryonic oscillations at z > 2 to constrain DE
 – In comparison to z~1
• Observational parameters of HETDEX
 – Case for LAEs as tracers of large-scale structure
• Visible Integral-field Replicable Unit Spectrograph (VIRUS)
 – Massively replicated spectrograph for new wide-field corrector on HET
• Modeling of HETDEX constraints on w(z)
 – Non-parametric Monte-Carlo simulations
• Status and plans
 – Focus on contingency
• Non-linearities are negligible
 – More leverage on $w(z)$ from a given volume surveyed
Baryonic Oscillations at $2 < z < 4$

- Non-linearities are negligible
 - More leverage on $w(z)$ from a given volume surveyed

- Integral effect of $w(z)$ on $H(z)$ and $d_A(z)$
 - Results in leverage on w for redshifts lower than z_{max} of survey
 - Best constraints are obtained $\Delta z \sim 1$ below z_{max}
 - Also probes possible high redshift evolution of $w(z)$

\[
H_z = h \sqrt{\Omega_m (1 + z)^3 + \Omega_{\Lambda} \exp \left[\frac{\int_0^z \frac{1 + w(z)}{1 + z} \, dz}{1} \right]}
\]

- It is straightforward to select tracers at $z > 1.8$
 - LBGs via photometry
 - LAEs

- At $z \sim 1-2$, [OII] is in far red and H_α is in J-H
 - Absorption-line redshifts are difficult
 - Selection of star-forming galaxies requires a photometric tracer over areas greater than 500 sq. degrees
Baryonic Oscillation Tracers

- Target-selection for efficient spectroscopy is a challenge in measuring DE with baryonic oscillations from ground-based observations
 - LRGs selected photometrically work well to z~0.8
 » High bias tracer already used to detect B.O. in SDSS
 » Higher redshifts require large area, deep IR photometry
 » Probably can’t press beyond z~2
 » Spectroscopic redshifts from absorption-line spectroscopy
 - [OII] and Hα emitters can work to z~2.5 with IR MOS
 » But difficult to select photometrically with any certainty
 - Lyman Break Galaxies work well for z>2.5
 » Photometric selection requires wide-field U-band photometry
 » Only ~25% show emission lines, but have high bias
 - Ly-α emitters detectable for z>1.7
 » Numerous at achievable short-exposure detection limits
 » Properties poorly understood (N(z) and bias)

HET Dark Energy Experiment

- HETDEX has the following observational parameters
 - 200 sq. degrees area; 1.8 < z < 3.7; 5.2 Gpc³ (h=0.71)
 » Two 10x10 sq. deg. fields or strip 7x30 sq. degrees
 - LAEs trace large-scale structure
 » Expect 0.5 to 1 million tracers in volume
 - LAEs detected directly by a massive IFU spectrograph
 » 20 minute exposures of each 18 arcmin diameter field, with ~1/9 fill factor on sky
 » ~110 clear dark nights to complete
 - Sufficient volume and source density to provide independent constraints on H(z) and d_A(z) at three redshifts ~1% precision
 - Unique in constraining w at low redshift while still allowing detection of higher redshift evolution
Ly-α emitters as tracers

- Properties of LAEs have been investigated through NB imaging
 - Most work has focused on \(z \sim 3 - 4 \), little is known at \(z \sim 2 \)
 - Limiting flux densities \(\sim \text{few } \epsilon^{-17} \text{ erg/cm}^2/\text{s} \)

- They are numerous
 - A few per sq. arcmin per \(\Delta z = 1 \) at \(z \sim 3 \) from numerous studies
 » But significant cosmic variance between surveys
 » 5000 – 10000 per sq. deg. Per \(\Delta z = 1 \) at \(z \sim 3 \)
 - Largest volume MUSYC survey still shows significant variance in 0.25 sq. degree areas
 » Bias of 2 – 3 inferred

- Basic properties of LAEs would make them a good tracer if they could be detected with a large area integral field spectrograph
 - Has the advantage of avoiding targeting inefficiency or bias
 - A larger range of \(z \) can be probed than is possible with LBGs

VIRUS

- Visible Integral-field Replicable Unit Spectrograph
 - Prototype of the industrial replication concept
 » Massive replication of inexpensive unit spectrograph cuts costs and development time
 - Each unit spectrograph
 » 246 fibers each 1 sq. arcsec on the sky
 » In 1/3 fill densepak IFU
 » Dither of 3 exposures gives 0.22 sq. arcmin and 340-570 nm wavelength range, \(R = 850 \)
 » ~140 VIRUS would cover
 » 30 sq. arcminutes per observation
 » Detect 14 million independent resolution elements per exposure

- Prototype is in construction
 - Delivery in April
VIRUS fits within the central obstruction of the new HET wide-field corrector.

VIRUS consists of 140 units mounted on HET.

VIRUS modules of 14 units arrayed on tracker.

Layout of ~140 IFUs with 1/9 fill factor is optimized for HETDEX:
- IFU separation is smaller than non-linear scale size
- LAEs are very numerous so no need to fill-in – want to maximize area
- Suppression of power spectrum is a small effect
 » Dithering of pointing centers removes aliasing
Predicted Number Counts

- Sensitivity of VIRUS (5-σ):
 - 2×10^{-17} erg/cm²/s at $z=2$
 - 1×10^{-17} erg/cm²/s at $z=3$
 - 0.8×10^{-17} erg/cm²/s at $z=4$

- Detected # LAEs approximately constant with redshift:
 - sensitivity tracks distance modulus
 - predict $-5/\text{sq. arcmin} = 18,000/\text{sq. deg. per } \Delta z = 1$

- so with $\Delta z \approx 2$ and 1/9 fill factor, expect 3,000 LAEs per sq. degree
 - 0.6 million in 200 sq. degrees
 - sufficient to constrain the position of the BO peaks to <1% (1-D)

- this survey will require ~1100 hours exposure or ~110 good dark nights
 - needs 3 Spring trimesters to complete

Le Delliou et al., 2005

Simulating HETDEX

- Analytic prediction of $\Delta P(k)$ as a function of k:
 - 100 sq. degrees $\Delta z=1$ (1/4 volume)
 - Gives $\sigma_k=0.9\%$ for a one-parameter fit to realizations of the 1-D power spectrum

- One-parameter fit uses shape of power spectrum implicitly
 - 200 sq. deg. gives 0.8% precision for 1-D spectrum in each of three redshift bins $1.8 < z < 3.7$
 - Corresponds to 1.1% on $d_n(z)$ and 1.4% on $H(z)$ in each bin separating azimuthal and tangential components (Seo & Eisenstein 05)
Baryonic oscillations give both $H(z)$ and $d_A(z)$
- Shown relative to their values for a cosmological constant

Baseline HETDEX dataset should provide $\sim 1\%$ constraints on each, at three redshifts
- This is sufficient to discriminate many possible forms for $w(z)$

Arbitrary forms for $w(z)$ to illustrate behaviour of $H(z)$ and $D_A(z)$

Compare constraints on $w(z)$ obtained by SNe and HETDEX
- Data distributed with appropriate errors about input model
- SN simulation assumes 3000 SNe each with 10% error to $z\sim 1.8$
- HETDEX assumes 0.6 million galaxies $1.8 < z < 3.7$ in 10 times SDSS volume

Non-parametric Monte-Carlo
- Start with input $w(z)$ and generate mock datasets
- No form for $w(z)$ is assumed in fit
- Global minimization of χ^2 for $w(z)$ over 10 bins with $\Delta z=0.5$, with smoothing to prevent disjointed solutions
- 100 dataset realizations per model map out range of $w(z)$ in each Δz bin
• Non-parametric modeling shows effect of integral constraint on \(w(z)\)
 – Considerable leverage on lower redshift \(w(z)\)
 – Best constraints come \(\Delta z \sim 1\) below maximum redshift of dataset

• Discriminatory power of HETDEX comes from the three separate measures of \(H\) and \(d_A\)
 – \(z \sim 2\) data is crucial

• Modeling of HETDEX shows that it will be as powerful as SNAP in constraining DE

• Very complimentary
 – Extends to higher redshift to test for evolution
 – Errors at lower redshift small enough to look for systematic effects in SNe distances

\[w(z) = -1\]

Simulating HETDEX

– Here \(w(z)\) is set to -1, but is modeled as variable, and is constrained to 20%
– If a prior of constant \(w\) is assumed then \(w=\text{const}\) is constrained to 2%

\[w(z) = -1\]

Simulating HETDEX

– Here \(w(z)\) is set to -1, but is modeled as variable, and is constrained to 20%
– If a prior of constant \(w\) is assumed then \(w=\text{const}\) is constrained to 2%
More plots of non-parametric $w(z)$

HETDEX achieves sensitivity even if $w(z)$ evolution is at low redshift due to the integral relationship between $w(z)$ and the observables.

HETDEX strengths

- **Survey efficiency**
 - No setup time for targeting objects
 - No pre-survey to select targets

- **Data are largely self-calibrating**
 - Very good sky determination
 - Photometric calibration against SDSS stars in every observation

- **LAEs are numerous**
 - Biggest uncertainty is in $N(z \sim 2)$ and bias, but NB imaging results are encouraging
 - Need pilot survey with prototype VIRUS mounted on McDonald 2.7 m
 - Survey a large enough volume to characterize the population
 - 0.2 sq. deg $1.8 < z < 3.7$ around HDF/GOODS-N starting in April
 - ~5 million Mpc3 10x larger volume than MUSYC LAE survey
Concerns & Contingency

- Number of VIRUS modules
 - Number of modules is driven by funding but can’t exceed ~150 due to weight considerations
 - Observing time can counteract shortfall in funding
 - Little effect in simulations until number of units drops below 100
 - VIRUS design is inherently low-risk

- Contamination of sample by low z emission-line objects
 - Can tolerate 10% residual contamination
 - Selection of high EW objects against SDSS photometry will be tested in pilot survey

- Allocation of telescope time
 - Strong support for 100 night allocation from HET board and community
 - Small user community makes negotiation of time allocation straightforward

Status and Plans

- VIRUS prototype is in construction
 - Will be used for pilot survey to establish properties of LAEs

- HET wide field upgrade is mostly funded by a Congressional earmark
 - Private fundraising for VIRUS is continuing

- $25M total funding goal with ~$6.5M in hand
- CoDR in early 2006
- 2009 start for survey with funding
 - 3 years to complete
The HETDEX/VIRUS collaboration

- University of Texas at Austin
 - Design and production of VIRUS (Hill, P. MacQueen, P. Palunas, P. Segura)
 - HET Wide Field Upgrade (MacQueen, J. Booth, J. Good, Palunas, Hill)
 - Survey simulation and planning (K. Gebhardt, E. Komatsu, Hill, N. Drory)
 - Telescope operations model (HET staff)
- Universitaet-Sternwarte, Muenchen and MPE
 - Data reduction software pipeline (R. Bender, U. Hopp, C. Goessl)
 - Survey N-body simulation (P. Schuecker)
 - IFU testing (F. Grupp)
 - Mechanical design of collimator module (W. Altmann, W. Mitsch)
- Astrophysikalisches Institut, Potsdam
 - IFU prototype design, construction, testing (M. Roth, A. Kelz, S. Bauer, E. Popow)
- Instituto de Astronomia (UNAM)
 - Optical design investigation (F. Cobos, C. Tejada)
- Pennsylvania State University
 - Local galaxy contaminants (C. Gronwall and R. Ciardullo)
 - Planning for data management/dissemination (D. Schneider, D. Vanden Berk)