The Detailed Chemical Abundance Patterns of M31 Globular Clusters

Janet E. Colucci¹

Rebecca A. Bernstein¹
Judy Cohen²
Andy McWilliam³

¹ UCO/Lick Observatory, UC Santa Cruz
² California Institute of Technology
³ Carnegie Observatories
Motivation: Detailed Chemical Abundances

Stellar populations are key to studying galaxy formation

- Abundances of old stars trace galaxy formation histories
 - gas enrichment
 - star formation rates
 - supernovae rates/yields

But: The only large galaxy studied is the Milky Way

Individual stars are only accessible using high resolution spectra in nearby dwarf galaxies (i.e. within ~250 kpc)

\(\alpha \) elements: O, Si, Ca, Ti, Mg
Motivation: Detailed Chemical Abundances

Stellar populations are key to studying galaxy formation

- Abundances of old stars trace galaxy formation histories
 - gas enrichment
 - star formation rates
 - supernovae rates/yields

But: The only large galaxy studied is the Milky Way

Individual stars are only accessible using high resolution spectra in nearby dwarf galaxies (i.e. within ~250 kpc)

High resolution integrated light spectra (ILS) of GCs: accessible to ~4 Mpc today!
Low resolution spectra and line index techniques are powerful but
 – poor resolution in α and Fe at low $[\text{Fe/H}]$
 – info on other $[\text{X}/\text{Fe}]$ sparse
 – relies on calibration to local stars

Why High Resolution Spectra of Globular Clusters?

Caldwell et al (2011)

Puzia et al (2005)
Low resolution spectra and line index techniques are powerful but
- poor resolution in α and Fe at low [Fe/H]
- info on other [X/Fe] sparse
- relies on calibration to local stars
Our ILS Abundance Analysis Method

- Based on standard RGB star abundance analysis
- Use isochrones to represent entire cluster population
- Constrain Age and Z using EWs of 30-150 available Fe I lines
- Also measure 20+ α, Fe-peak, neutron capture, and light elements!

- Demonstrated accuracy of ±0.1 dex in [Fe/H], [X/Fe]:

- Milky Way GCs with a range of [Fe/H], σ_v, $M_{v_{total}}$, HB morphology

- Large Magellanic Cloud GCs with a range in age of 0.01 Gyr to >10 Gyr
 (Colucci et al. 2011, Colucci et al. 2012, Colucci & Bernstein 2012)

Not a calibration!
Our ILS Abundance Analysis Method

- Based on standard RGB star abundance analysis
- Use isochrones to represent entire cluster population
- Constrain Age and Z using EWs of 30 -150 available Fe I lines
- Also measure 20+ α, Fe-peak, neutron capture, and light elements!

- Demonstrated accuracy of ± 0.1 dex in [Fe/H], [X/Fe]:
- Milky Way GCs with a range of [Fe/H], σv, M_{total}, HB morphology
- Large Magellanic Cloud GCs with a range in age of 0.01 Gyr to >10 Gyr
 (Colucci et al. 2011, Colucci et al 2012, Colucci & Bernstein 2012)

***Not a calibration! ***
Our ILS Abundance Analysis Method

- Based on standard RGB star abundance analysis
- Use isochrones to represent entire cluster population
- Constrain Age and Z using EWs of 30 - 150 available Fe I lines
- Also measure 20+ α, Fe-peak, neutron capture, and light elements!

- Demonstrated accuracy of ±0.1 dex in [Fe/H], [X/Fe]:

- Milky Way GCs with a range of [Fe/H], σ_V, M_v^{total}, HB morphology

- Large Magellanic Cloud GCs with a range in age of 0.01 Gyr to >10 Gyr
 (Colucci et al. 2011, Colucci et al 2012, Colucci & Bernstein 2012)

***Not a calibration! ***
M31 Sample

- Data from Keck/HIRES
- Resolution ~ 24,000
- 3500-8500 Å wavelength coverage
- SNR > 60

The Clusters:
- V Magnitudes of 14-17
- Galactocentric Radii of 2-117 kpc
- Metallicities of -2.2 to -0.1
- Velocity dispersions of 6 to 30 km/s

27 GC spectra to date
Initial Results: Fascinating if true!

- intermediate ages found at high [Fe/H]
- What about Blue Horizontal Branch stars?
- What else can we learn and how can we take advantage of our unique data?

Strong constraints required better tools!
Developing Better Tools:

Two Subtleties Uncovered:

#1. Analysis of high [Fe/H] and high velocity dispersion GCs is really sensitive to line blending.

Synthesize all Fe Lines for these GCs!
BHB stars are only present in a limited range in [Fe/H] and age in the isochrones

Put in BHB ad hoc!

Two Subtleties Uncovered:

#2: high [Fe/H] and a blue horizontal branch (BHB) can affect age measurement

Developing Better Tools:

![Graph showing [Fe/H] vs Age with data points and isochrones.]

Colucci et al. (2009)

This work

Partial BHB

Complete BHB
A simple method for evaluating (missing) blue flux

Example: Milky Way GC NGC 6752

- \([\text{Fe/H}] = -1.6, 13 \text{ Gyrs}\) (i.e low \([\text{Fe/H}]\) with BHB)

- Blue Lines most sensitive to BHB

- New result: Same age, better solution!

- In M31 high \([\text{Fe/H}]\) GCs ages can be more affected
M31 Globular Cluster Fe and Age Results

-2.2 < [Fe/H] < -0.1

Colucci et al. (2009)
This work
-2.2 < [Fe/H] < -0.1
M31 Globular Cluster Fe and Age Results

- $-2.2 < [\text{Fe/H}] < -0.1$

- A less extreme trend of decreasing age with increasing $[\text{Fe/H}]$... but several still present
M31 Globular Cluster Fe and Age Results

- $-2.2 < [\text{Fe/H}] < -0.1$

- A less extreme trend of decreasing age with increasing $[\text{Fe/H}]$... but several still present

- B029: A young metal-rich GC
M31 Globular Cluster Fe and Age Results

- $-2.2 < [\text{Fe/H}] < -0.1$

- A less extreme trend of decreasing age with increasing $[\text{Fe/H}]$... but several still present

- B029: A young metal-rich GC

- High $[\text{Fe/H}]$ GCs with BHBs!
Results: First Individual Ca, Ti, Si measurements for M31 GCs
Results: First Individual Ca, Ti, Si measurements for M31 GCs
Results: First Individual Ca, Ti, Si measurements for M31 GCs
Results: First Individual Ca, Ti, Si measurements for M31 GCs
Results: First Heavy Element measurements!

Beyond α-elements!

- 10 measurements of Eu, 7 upper limits
- Knee in Eu, rising and flattening/declining Ba a signature of s-process enrichment by high metallicity AGB stars
Results: First Heavy Element measurements!

Stay tuned for O, Na, Al, Mg, Ni, Sc, V, Co, Mn, Cu, Cr, Y, Sr, La, Nd, Sm!

and more detailed horizontal branch morphology constraints!