GALACTIC STRUCTURE AND STELLAR POPULATIONS

Structure of our discussion

- Identified broad science themes
- Considered landscape in 2020
- Identified suite of technical details needed to define spectroscopic capabilities
- For each science theme, drilled down into specific science questions
- Began to populate big table of technical details
- Identified specific questions needing answers
- Maintained a running list of “low hanging fruit”
Discussion in a nutshell

A. Galactic structure
- Bulge
- Disk and inner halo
- HIDs and outer halo

B. Local galaxy
- "Nearby" galaxy
- "Local" galaxy

C. Milky Way
- Local group population
- Star clusters: young remnants
- Known dwarf galaxies
- Galactic light echoes

D. Extended sources
- TSM
- Classification for cooling disc/irps
- Galactic light echoes

- Format: [Name of galaxy] [Type]
- [Data from table]

Summary
- "Nearby" galaxy properties
- "Local" galaxy characteristics
- Milky Way system analysis
- Extended source classification

Table

<table>
<thead>
<tr>
<th>Galaxy Type</th>
<th>Description</th>
<th>Distance (Mpc)</th>
<th>Stellar Mass (Log10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwarf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A. Galactic structure

- What is the accretion history of the Galaxy?
- What is the shape of the dark matter halo?
- What does the population of DM subhalos look like?
- How long is the metal-poor tail?
LSST discovery space

RS Lyrae to 400 kpc

MSTO to ~200 kpc
What is the accretion history of the Galaxy?

- Tracers: Giants, HB stars, subgiants, MSTO stars
- Measurements: velocities (<10 km/s accuracy)
- Abundances: [Fe/H], [α/Fe], [C/Fe], individual species
- Proper motions from GAIA and LSST
- Sample size ~10^6?

Questions, comments:
- How hot a tracer can we effectively use?
- What is the sweet spot for v_{err}?
- How to efficiently select targets?
- What different samples are needed?
- Need to push on photometric accuracy
A. Galactic structure

What does the population of DM subhalos look like?
DM subhalos perturb streams
Tracers: all stars in streams, colder better
Measurement: velocities <1 km/s
Need to turn sample size into magnitude distribution
Simulation?
B. Solar neighborhood

LSST: 200 pc volume, 10% parallaxes
B. Solar neighborhood

What are the masses of BDs?
Tracers: Binary BDs
Velocities: <50-100 m/s
R~40-50K

Q: Can we use color as binary selector? Will have distance.

What is the nature of weather on BDs?
Measurement: linked spectral and photometric variability
C. Milky Way and local galaxy populations

- Known and unknown Star clusters

- Known and unknown dwarf galaxies
D. Extended sources

- ISM
 - Stellar classification for aid in creating dust maps

- Galactic light echoes
 - Diffuse light spectroscopy

- Microquasars
 - Spectral study of surrounding low surface brightness features
Technical capabilities discussed

- Depth
- S/N
- Wavelength
- Resolution
- Target surface density
- Survey area
- Minimum sample size
- Desired sample size
- Target selection efficiency
- # visits
- Cadence
- Data needed when?
- Other considerations: overlap with other science areas, potential capability trades, narrowband imaging as complement or replacement for spectroscopy?)
<table>
<thead>
<tr>
<th>Question</th>
<th>Depth</th>
<th>S/N</th>
<th>A (optical)</th>
<th>R (sp. deg^{-1})</th>
<th>S_{target} (2$^\circ$)</th>
<th>Area (1000 sp. deg^2)</th>
<th>Min. sample size</th>
<th>Desired sample</th>
<th>E1(2)</th>
<th># vars</th>
<th>Cadence</th>
<th>Data used</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy p.p. dynamics</td>
<td>200-25</td>
<td>5-10</td>
<td>2000-5000</td>
<td>2000</td>
<td>Z</td>
<td>16,000 sp. deg^2</td>
<td>10^5</td>
<td>10^4</td>
<td>X</td>
<td>X</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Abundance (Dw/K, k/k)</td>
<td>2.0</td>
<td>1.0</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Individual/Total</td>
<td>30-50</td>
<td>30-100</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Invert q from minimal kinematics</td>
<td>2.0</td>
<td>0.10</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>M dwarf m.f.</td>
<td>0-2.4</td>
<td>0.10</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>P.D. distant WDs</td>
<td>0-24</td>
<td>0.10</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-24</td>
<td>0.10</td>
<td>6000-1 μm</td>
<td></td>
</tr>
</tbody>
</table>