DUSTY GALAXIES AT HIGH REDSHIFT

Desika Narayanan
The University of Florida

Qi Li (University of Florida)
Romeel Davé (ROE)

Charlie Conroy Harvard
Ben Johnson Harvard
Jim Geach Hertfordshire
Bobby Thompson Portalarium
Gergő Popping MPIA
How do you include dust in galaxy simulations?
SIMBA: the descendent of MUFASA

Numerics:
GIZMO: Gadget gravity+meshless hydro
Grackle-3.1 cooling with metals and self-shielding

Physics (SF/Dust):
KMT H$_2$-based star formation
9 metal-chemical enrichment from SNe, AGB
On the fly Dust formation/destruction

Physics (other):
Black hole growth/AGN feedback
Kinetic winds based on FIRE scalings

Davé, Anglés-Alcázar, Narayanan, Li et al. 2019
SIMBA: Model Verification

Davé, Anglés-Alcázar, Narayanan, Li et al. 2019

z=0 gas MZR

![z=0 gas MZR](image)

z=2 gas MZR

![z=2 gas MZR](image)

z=0 stellar MZR

![z=0 stellar MZR](image)
HOW DUST USED TO BE INCLUDED

\[M_{\text{dust}} = 0.4 \times M_{\text{metals}} \]

Dwek 1998
Vladilo 1998
Watson 2011
A NEW GENERATION OF DUST IN GALAXY FORMATION SIMULATIONS

Visualization: Ben Kimock (University of Florida)

Formation
- Type II SNe
- AGB Stars

Growth
- Accretion of metals

Destruction
- Sputtering
- SNe blast waves
- Consumption by SF

See also: Popping et al. (2017), McKinnon et al. (2016), C.-Y. Hu et al 2019, Choban et al. in prep., Hou et al. (2019), Hirashita et al. (2018)
TUNING TO THE DUST MASS FUNCTION

\[
m_{i,d}^{\text{SNII}} = \begin{cases}
16 \sum_{i=\text{Mg, Si, S, Ca, Fe}} \delta_i^{\text{SNII}} m_{i,ej}^{\text{SNII}}, & i = \text{O} \\
\delta_i^{\text{SNII}} m_{i,ej}^{\text{SNII}}, & \text{otherwise},
\end{cases}
\]

\[
\left(\frac{dM_{\text{dust}}}{dt} \right)_{\text{grow}} = 1 - \frac{M_{\text{dust}}}{M_{\text{metal}}} \left(\frac{M_{\text{dust}}}{\tau_{\text{accr}}} \right)
\]

\[
\tau_{\text{accr}} = \tau_{\text{ref}} \left(\frac{\rho_{\text{ref}}}{\rho_{g}} \right) \left(\frac{T_{\text{ref}}}{T_{g}} \right) \left(\frac{Z_{\odot}}{Z_{g}} \right).
\]

Dwek 1998

Asano et al. 2013

Davé, Anglés-Alcázar, Narayanan, Li et al. 2019

Li, Narayanan & Davé 2019 in prep.
TUNING TO THE DUST MASS FUNCTION

\[
\frac{dM_{\text{dust}}}{dt} \bigg|_{\text{grow}} = 1 - \frac{M_{\text{dust}}}{M_{\text{metal}}} \left(\frac{M_{\text{dust}}}{\tau_{\text{accr}}}\right)
\]

Dwek 1998

\[
m_{i,d}^{\text{SNII}} = \begin{cases}
16 \sum_{i=\text{Mg,Si,S,Ca,Fe}} \delta_{i}^{\text{SNII}} m_{i,ej}^{\text{SNII}}, & i = 0 \\
\delta_{i}^{\text{SNII}} m_{i,ej}^{\text{SNII}}, & \text{otherwise},
\end{cases}
\]

Asano et al. 2013

\[
\tau_{\text{accr}} = \tau_{\text{ref}} \left(\frac{\rho_{\text{ref}}}{\rho_{g}}\right) \left(\frac{T_{\text{ref}}}{T_{g}}\right) \left(\frac{Z_{\odot}}{Z_{g}}\right).
\]
The impact of on the fly dust physics: $z=0$ (25 Mpc)3 SIMBA volume

Quenched Galaxies
APPLICATION 1: THE ORIGIN OF HIGH-REDSHIFT DUSTY GALAXIES
APPLICATION 1: A UNIVERSE OF DUSTY GALAXIES: WHAT PHYSICS IS IMPORTANT?

Grain growth and sputtering dominate dust mass function

Narayanan, Li, Davé 2019 (in prep)
THE RISE OF DUSTY STAR FORMING GALAXIES AT HIGH-REDSHIFT

The graph shows the normalized quantities of various parameters over redshift (z). The parameters include SFR/2.6e+03 (M⊙/yr), M_{dust}/5.1e+9 (M⊙), and L_{IR}/1.3e+13 (L⊙). The axes represent normalized quantities on the y-axis and redshift on the x-axis.
DIVERSE MORPHOLOGICAL STRUCTURES OF DSFGS

\[\text{SFRs} = 300-1500 \, M_\odot \, \text{yr}^{-1} \]
THE COMPLEX GEOMETRIES ASSOCIATED WITH HIGH-REDSHIFT GALAXIES

Narayanan, Turk, Feldmann et al. 2015, Nature
DIVERSITY IN SEDS AT Z=2: SFRS = \([300-1500 \, M_\odot/\text{YR}]\)
EXTINCTION AND ATTENUATION

- **2175 Å bump**
- **1 μm**
- **1000 Å**

More optically obscured
A UNIVERSE OF ATTENUATION LAWS

Narayanan, Conroy, Davé Johnson & Popping 2018b
WHAT DRIVES THE DIVERSE RANGE OF OBSERVED ATTENUATION LAWS?
WHAT DRIVES THE DIVERSE RANGE OF OBSERVED ATTENUATION LAWS?
WHAT ABOUT THE BUMP?

Kriek & Conroy 2013

Bump Strength

(DN, Conroy, Davé, Johnson & Popping 2018b)
WHAT DRIVES THE DIVERSE RANGE OF OBSERVED ATTENUATION LAWS?
GEOMETRY + STELLAR AGE DISTRIBUTION DRIVES VARIATIONS IN THE IRX-β PLANE AS WELL.
1. New SIMBA cosmological simulations self-consistently model the formation, growth, and destruction of dust in large volumes.

2. DSFGs at high-redshift are a “main mode” of galaxy formation – mergers unimportant. A dusty galaxy at high-z is just a plain old massive galaxy.

3. Attenuation laws (slopes and bump strengths) show dramatic variations between galaxies due primarily to star-dust geometries (for a fixed extinction law).