Gyrochronology in the Era of Wide-field, High-cadence, Synoptic Photometric Surveys

Establishing the Membership and Ages of Galactic Open Clusters.

NOAO DECam Community Workshop
Tucson [Az], August 2011

David James
CTIO – djj@ctio.noao.edu
Measuring Photometric Rotation Periods: The Galilean Way

The Early Years

- Single Objects
- 10-14 night cadence
- Photoelectric photometers, single filter
- Narrow Field (arcsecond-arcminute)

Modern Era

- Multi-object (10s-100s objects)
- 4-6 weeks cadence
- Some mosaic CCD cameras, multi-filter
- Generally, wide-field (10-60 arcminutes)
- Small-aperture ESP transit cameras can provide VERY wide-field, high cadence, multi-year observations.

New/Next Generation

- Entire populations (10^5-10^8 stars)
- Multi-year cadence
- Giga-pixel CCD mosaic imagers
- Very wide field (2~5 degrees)
- DECam → deep, wide, low-masses
The Dark Energy Survey:
Observing Strategy – bad news for gyrochronology?

- Sept-Feb observing seasons
- 80-100 sec exposures
- 2 filters per pointing (typically)
 - gr in dark time
 - izy in bright/grey time
- Photometric calibration: overlap tilings, standard stars, spectrophotometric calibration system, preCAM
- 2 survey tilings/filter/year
- Interleave 5-10 SN fields in griz if non-photometric or bad seeing or time gap (aim for ~5 day cadence)
- DES is *probably* not going to enable substantial rotation period studies of *young* star clusters on its own.
 However, adding in NOAO community time will allow for period-finding to be achieved.
The Future of Gyrochronology: Synoptic Surveys:

What is gyrochronology?

- Using rotation periods to determine the age of a star.
- Distance independent method: advantage over traditional isochrone-fitting method and modern lithium depletion boundary method.
- Identification of stars in a period-colour diagram yields internal structure.
- Works especially well in open clusters:
 - Comparison with isochrones and LDB results can provide a statistically robust, distance-independent test of MS-models
- Caveat emptor: binarity and differential rotation can cause problems.
What is gyrochronology?

- Using rotation periods to determine the age of a star.
- Distance independent method: advantage over traditional isochrone-fitting method and modern lithium depletion boundary method.
- Identification of stars in a period-colour diagram yields internal structure.
- Works especially well in open clusters: comparison with isochrones and LDB results can provide a statistically robust, distance-independent test of MS models.

Caveat emptor: binarity and differential rotation can cause problems.

Synoptic Surveys: Pros and Cons for Gyrochronology using DECam

Pros:
- Long baselines (>5 yrs)
- Deep: low-mass star periods
- Multiple Filters: Prot. confirmation
- People Friendly: data-pipelines, observing

Cons:
- Spot Lifetimes
- Period Evolution: (year-to-year)
- Deep: “high mass” saturation for nearby clusters.
- Deep: Source Confusion
DECam Gyrochronology Studies: Photometric Variables and Cluster Membership

DECam Gyrochronology Studies: Photometric Variables and Cluster Membership

17 Open clusters in main survey fields

<table>
<thead>
<tr>
<th>Name</th>
<th>RA</th>
<th>Dec</th>
<th>#OCs</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPT</td>
<td>-60<RA<105</td>
<td>-65<Dec<-30</td>
<td>16</td>
<td>7 NGC clusters, 7 ESO clusters</td>
</tr>
<tr>
<td>Galactic Cap</td>
<td>-30<RA<30</td>
<td>-30<Dec<-25</td>
<td>1</td>
<td>Blanco 1</td>
</tr>
<tr>
<td>Connecting</td>
<td>30<RA<55</td>
<td>-30<Dec<-1</td>
<td>0</td>
<td>(-Whiting 1)</td>
</tr>
<tr>
<td>Stripe 82</td>
<td>-50<RA<55</td>
<td>-1<Dec<1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
17 Oph

<table>
<thead>
<tr>
<th>Name</th>
<th>SPT</th>
<th>Galactic Cap</th>
<th>Connecting</th>
<th>Stripe 82</th>
</tr>
</thead>
</table>

Diagram:

```
  μ_RA (mas/yr)  50
    -25  0  25
```

```
  μ_DEC (mas/yr)  25
    -50 -25  0
```