Trident: Scalable Compute Archive and Analysis Systems

Arvind Gopu
Soichi Hayashi, Mike Young, Ralf Kotulla*, Robert Henschel, et al.

Indiana University – Pervasive Technology Institute/Research Technologies
*University of Wisconsin, Madison

March 11 2015
Big Data in Astronomy Workshop, Tucson, AZ
Trident in a Nutshell

- Secure data archive
- Metadata Search, View, Plotting Analysis
 - Build custom searches; Highly adaptive plotting interface
- Image Visualization and Basic Interactive Analysis
- Custom Integrated Data Processing Workflows
 - Cater to individual stakeholder, application, and audience
 - User/Operator execution; Datasets/collections
 - Built-in Data Provenance and Processing Logs → Reproducibility
- Scale up/down in terms of functionality, system complexity, etc.
 - Adapts to Big Data, and nominally large or small data
 - Develop component for each distinct functionality; then compose application instance
 ("Composition over Inheritance" design pattern)
DEMO!

◊ Video showing 4 features that demonstrate how Trident (using ODI-PPA and EMC-SCA as examples) serves as a Scalable Compute Archive with Visualization & Analysis Features

◊ Plus a few screenshots

◊ Not Shown: Lots of other functions including
 ◊ Administrative/operator/system health monitoring
 ◊ GCS-SCA, etc.
Source Explorer: Overlay (Zoomed out)
Source Explorer: Overlay (Zoomed In)
Image Preview, Metadata, QA, Provenance
Instrument Data Flow Monitoring
DEM0!

◊ Briefly, let’s get back to the demo!
Trident: Background

- **Team:** Combined 0.75 – 2.5 FTE at various times at IU + 0.5 – 2 External Pipeline Developers over several years (~2 years core)

- **First Trident Project:** WIYN One Degree Imager – Pipeline, Portal, Archive
 - Larger datasets → Paradigm Shift
 - Prototype, User Engagement Workshops, Design Review, Dev & Testing, Ops
 - Scope *decrease* early on, then Scope *increase* (owing to detector expansion)

- **Trident Projects and Web URLs**
 - Full Fledged Portal with Metadata & Visual Image Analysis, Archival Data Access, Integrated Pipelines
 - **Offshoots**
 - Archival Data Access
 - Another Astronomy Project http://gcs.ppa.iu.edu
 - Metadata Analysis and Data Publication
 - **Prototype**
 - LMU-PPA: Wendelstein Wide Field Imager (||| to ODI)
 - Infrared Astronomical Imaging
 - **Papers:** http://ppa.iu.edu/publications
Trident: Architecture / Design Choices / Thought Process

◊ Web based Science Gateway model
 ◊ Balance legacy UI features and modern UI design; Consistent look and feel
 ◊ Provide desktop application features (and related backend processing)
 ◊ Integrate pipelines on existing CI accessible via portal
 ◊ Custom UI for each of these
◊ Often times, UI tends to take a backseat – usability becomes an afterthought
◊ Typical preference for generalized large scale web and middleware solutions: Pros and Cons
◊ Framework of Frameworks
 ◊ Not one package/tarball/RPM model – instead, customized to each stakeholder’s requirements.
Trident: Architecture / Design Choices / Thought Process

- MVC Design Pattern
- Light Weight Services + AMQP
 - + Portability, Ease of Use, Scalability
 - - Harder to track/monitor system health
- RHEL 6.5/Centos 7.x KVM
 - Separate production/test/dev stacks
 - Leveraged Project and Institutional CyberInfrastructure
Trident: Open Source Libraries and Applications Used

◊ Common Tools/Applications
 ◊ Apache, MySQL, Cobbler, Puppet, Munin; Lustre; Confluence, JIRA

◊ Open Source Libraries
 ◊ PHP-Zend, Bootstrap, AngularJS, jQuery, HighCharts, TileViewer
 ◊ NumPy, SciPy, PyFITS, etc.

◊ Integrated Pipelines – incl. custom input and output UIs
 ◊ QuickReduce (WIYN), SWarp, SourceExtractor, IRAF
 ◊ ViZier for catalog lookup and overlay
Trident: Scalability

Bubble size = Processing time log (CPU hours)
Keys to Scaling Up: DESIGN

◦ AMQP: No ports to open, no files to create/cleanup on shared file systems → Clean and Secure

◦ Custom UI and Integrated Applications
 ◦ Plus Search Form Builder (for example)

◦ Any Unix Command Line Appl. can be integrated with custom UIs
 ◦ Initial version: Integrated QR in 2 weeks; SWarp in 1 week
 ◦ Highly Customizable & Polished version: 4-8 weeks for development and testing

◦ Scaling Horizontally / Resource Scaling
 ◦ A user workflow job could go to one of N backend instances
 ◦ Add more resources as required
Keys to Scaling Up: LEVERAGED IU CYBERINFRASTRUCTURE

◊ Petaflop scale Big Red II Supercomputer
 ◊ 32-core and 16-core nodes (latter with GPUs)
◊ 42 PB Scholarly Data Archive – geographically replicated secure tape archival system
◊ 5 PB Data Capacitor - high performance disk cache
◊ Multiple Virtual Machine options
◊ State of the Art Data Center with a ton of expansion space
 ◊ Co-Location capabilities for collaborating group
Keys to Scaling Up: SCALABLE APPLICATIONS

- Example: Parallelized Quick Reduce using AMQP
- Design: Server-Manager-Worker framework (vs. typical master/slave)
 - Advantage: Flexible # of nodes during execution, easy support for workflows
- Scaling: Most I/O work done on nodes, minimal communication between servers and workers → good scaling
- Caveat: Network-served data can be I/O bottleneck (even at 40GBit/s bandwidth)
- Benchmark Numbers: Performance scales linearly with number of nodes out to ~128 nodes
 40 Megapixels/s raw data, limited by I/O
Trident + AMQP QR: Case Study of LSST Data Volumes

- LSST rate (165MPix/s) → would need 185 nodes
 - All internal I/O (inter-process comm, export for SourceExtractor) using memory or RAM-disk
- Investigating I/O bottleneck on shared cluster file system
- Network-I/O performance critical for future systems

- 50% of LSST needs today on shared supercomputer!
Thank You!

◊ Feel free to register on ODI-PPA: https://portal.odi.iu.edu

◊ Check out related papers: http://ppa.iu.edu/publications
Trident Project Acknowledgments

◊ We are grateful to several people/groups including (but not limited to):
 ◊ The IU-PTI/RT Storage, HPS, HPFS teams that maintain the SDA tape system, the super computing clusters, and the Data Capacitor disk systems!
 ◊ Thomas Lee, system administrator consultant
 ◊ WIYN Collaborators including UW-Milwaukee/Madison and NOAO (ODI-PPA)
 ◊ David Morgan, Operations Coordinator for IU EM Center (EMC-SCA)
 ◊ Kathy Rhode, IU Astronomy Professor (GCS-SCA)
 ◊ Claus Goessl, LMU, Munich (LMU-SCA)
 ◊ Developers/maintainers of all the open source libraries and applications we use within the Trident!
ODI-PPA – Partner Organizations

ODI-PPA is a collaboration of the following organizations

◊ Pervasive Technology Institute (PTI) and UITS Research Technologies (RT) + IU Astronomy
 ◊ Capitalize on the expertise of PTI members who have led the effort to provide scientists in many different fields with user-friendly access to super-computing facilities
 ◊ IU Astronomy Expertise, Feedback

◊ University of Wisconsin (Astronomy)
 ◊ Build on the experience of Python based pipeline development experience.

◊ WIYN
 ◊ Experience running telescopes, and supporting Astronomy scientific community

◊ NOAO Science Data Management group
 ◊ Build on the experience of SDM and the legacy of IRAF and NHPPS Pipeline system