Visualization and Analysis of Rich Spectral Line Datasets

Elisabeth A.C. Mills (NRAO Jansky Fellow)
Jeff Kern, Brian Kent (NRAO), Joanna Corby (Uva)
Thanks to: E. Rosolowsky, A. Ginsburg
New Radio Telescopes

ALMA
66 dishes
wavelengths: 0.3 - 3.6 mm

VLA
27 dishes
wavelengths: 90 cm to 7 mm

![Image of ALMA telescopes with text: it's new on the inside!]

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>VLA</th>
<th>EVLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuum sensitivity in 12 hrs. 1σ</td>
<td>10 μJy</td>
<td>0.8 μJy</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>0.1 GHz</td>
<td>8 GHz</td>
</tr>
<tr>
<td>Number of frequency channels at maximum bandwidth</td>
<td>16</td>
<td>16,384</td>
</tr>
<tr>
<td>Maximum number of frequency channels</td>
<td>512</td>
<td>4,194,304</td>
</tr>
<tr>
<td>(Log) Frequency coverage, 1 - 50 GHz</td>
<td>22%</td>
<td>100%</td>
</tr>
<tr>
<td>Number of baselines</td>
<td>351</td>
<td>351</td>
</tr>
<tr>
<td>Spatial Resolution (5GHz)</td>
<td>0.3 arcsec</td>
<td>0.3 arcsec</td>
</tr>
</tbody>
</table>
The Big Data Problem

More telescope dishes = more sensitivity/resolution

More bandwidth = more sensitivity, more spectral lines

More channels = better spectral resolution, RFI excision

Faster integration = increased ability to do time-domain astronomy

... and more data.
Big Data Challenge #1: Volume

At full operations, ALMA will produce > 250 TB / year
VLA will soon do an all-sky survey, ~550 TB over ~5 years

This data volume is challenging to:

• store
• provide to users
• calibrate
• image

It could be worse:
ALMA capability:
250 TB / Day
VLA capability:
1.5 PB / Day

“…our pipeline is people”
Spectral cubes are high-dimensional data sets

VLA: up to 4 million frequency channels
Big Data Challenge #3: Complexity

Ultimately one can observe lines of many different molecules with different structure at different velocities
Real Spectra

J. Corby et al.
Real Cubes

a complex spectrum at every position in this complex image.

(E.A.C. Mills)
Balance losing & visualizing info?

“lose-lose” plots of Integrated emission from molecules—losing the velocity information AND really can’t quickly navigate this information

(E.A.C. Mills) (J. Corby)
Can we stay tied to spatial representations?

3D rendering can provide an intuitive comparison, but still becomes complicated when more than a few species are compared.

Peng et al. 2013
Scientific Computing & Imaging Institute

Calling in outside help!

- Scientific Visualization
- Information Visualization
- Uncertainty Visualization
- Volume Rendering
- Segmentation
- Topological Methods
Interactively exploring many data cubes

Multidimensional Transfer Functions & Linked Views

(Image: PKU Visualization Toolkit, Peking University)
Metadata-aided Exploration

EpiCanvas: A. Yivnat (SCI)
Ignoring spatial information

Topological analysis

I. Pascucci (SCI)
3 Takeaways

- Look up SCI Institute: https://www.sci.utah.edu/
- Ask me about synergy with the VLA Sky Survey
- Talk to me about dealing with complex datasets