Near Infrared Observations of Massive Young Stars with Gemini AO

Bob Blum
National Optical Astronomy Observatory
Acknowledgements

- Peter McGregor
- Peter Conti
- Augusto Damineli
- Elysandra Figuerêdo
- Cassío Barbosa
- Alessandro Moisés
Adaptive Optics, Lasers, & IFUs

- Deployed on Keck, VLT, and Gemini

Photo credit: Paul Hirst, Gemini Observatory
NIFS/ALTAIR

- NIFS IFU
 - 3” x 3”
 - 0.048” x 0.1”
 - 29 slices
- ALTAIR
 - 177 Actuator SH
 - NGS
 - LGS
NIFS/G45.45+0.06

Feldt et al. (1998)
NIFS/G45.45+0.06

Blum & McGregor (2008)
NIFS/G45.45+0.06
NIFS/G45.45+0.06

Blum & McGregor (2008)
NIFS/G45.45+0.06
K3-50 A/Radio

De Pree et al. (1994)
• OKYM3 dominates, point like but confused, OKYM4 resolved in continuum, lines
• Resolve some continuum sources, others look like clumps, Hofmann S8,9 most compact
• Compact cluster, ALTAIR/NIRI image would be helpful
• At 7000 pc, 3” is 0.1 pc
K3-50 A/NIFS

- Excitation: Cloudy ionization models
- Grid of 99 models, 10^4 cm$^{-3}$
- 21127/Brg + Brg/Dust
- Vary parameters (geometry, density) - 37000 K < Teff < 45000

Brg/Dust (1.8×10^{-5})

21127/Brg (0.05)
• Line Ratios to Br gamma, 21127 indicates hot star (0.04), 20587 (0.3-0.8) complicated by dust, HeI Lya fluorescence, also collisional transfer from 2^3P level
• See nebular structure. Density variations or line transfer?
K3-50 A/NIFS

- Br gamma velocity map
- Small scale lobes, not aligned with large scale radio flow, +/-25 kms (+/-6 kms for large scale flow)
- Low mass YSO outflow?
- No continuum source at point of symmetry.