Ambitious Goal: Image Key Stages of Planet Formation

- Planet formation is one of the most exciting fields in astronomy
- Connects star formation with exoplanets
 - How to explain exoplanet demographics, architectures
 - Detect young giant planets themselves
- Robust theory & simulation efforts are underway
- Benefits from a range of facilities
 - Poised for many advances with VLTI/MATISSE, ALMA, GPI/SPHERE, ELTs
- We expect complexity beyond what ALMA and single apertures can ever resolve
What are the relevant spatial scales?

- 24µm thermal emission from small dust grains
- Circumplanetary accretion disk
 - 0.03 AU = 0.2 milliarcseconds
- For nearby star-forming regions, d~100pc
- Gaps 5AU
 - ~50 milliarcseconds
- Full disk 80AU ~0.8"

Zhaohuan Zhu, Barbara Whitney, Robin Dong
Top-level Science Requirements (abbreviated)

- Resolve “Hill-sphere” size region of Jupiter at 1 AU (0.03 AU)
 - for nearby star forming region (140pc) \(\rightarrow 0.2\) milliarcseconds
- Sensitivity to thermal emission
 - for 300K grains \(\rightarrow\) mid-IR (10 microns)
- Angular Resolution of up to 0.2 milliarcseconds (TBD)
 - For 10\(\mu\)m \(\rightarrow\) requires 10km baselines
 - For 3\(\mu\)m \(\rightarrow\) requires 3km baselines
- Sensitivity to see a circumplanetary disk and even planets themselves
- Very complex scenes.. 200x200 pixel imaging
- SECONDARY: imaging AGN dust tori, mass loss, stellar surfaces…
Planet Formation Imager

Architecture

• Basics
 – Mid-infrared key science, 3-13 μm
 – Up to 7 km baselines
 – 2m minimum telescope diameter for NIR fringe tracking
 • Natural guide star AO is sufficient for YSO case
 • 4meter telescope gives better margin
 – 8m maximum telescope diameter to maintain at least 0.25” field of view
 – N>10 telescopes due to complex imaging

• Technology Developments Needed
 – Inexpensive 3m class telescopes (*COST DRIVER*)
 – Sensitive fringe tracking demonstration
 – Kilometric baselines w/ delay lines, beam transport, high throughput
 – Beam combiners for N>10 telescopes
 – Low-cost operations model
The “Planet Formation Imager” Project

planetformationimager.org